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INTRODUCTION  

The principal uncertainties in clearing a minefield are about the number and type of 

mines that have not yet been removed.  In this paper, we take the point of view that the 

number of mines should be thought of as a random variable M, and our main object is to 

show the advantages of a particular “Katz” class of probability distributions for M. We 

assume throughout that the result of clearance effort is to remove every mine with a 

known “clearance level” p, independently of all other mines.  If p=1, we have the case of 

exhaustive clearance.  A theory is hardly required when clearance is exhaustive, and the 

methods outlined below will be of no use, so we assume p<1. 

Barring the possibility of exhaustive clearance, any cleared minefield will retain some 

residual risk to transitors, and quantifying that riskiness should be one of the main goals 

of theory.  Depending on the assessment of risk, it may be advisable to either continue 

clearance or declare that the minefield is sufficiently cleared that the risk to transitors is 

bearable.  In simplest terms this risk is measured by Simple Initial Threat (SIT), the 

probability that the first minefield transitor will be killed or damaged by a mine. Since 

SIT depends strongly on the number of mines remaining, which in turn depends on the 

number M  that were there initially, it is hard to imagine how a basically subtractive 
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clearance activity could result in sufficient knowledge about M to support a computation 

of SIT, unless some information about M is input initially. This is in fact the case. 

According to Bayes theorem, the required information must take the form of a probability 

distribution for M.  Katz distributions are a two-parameter class of probability 

distributions that is broad enough to be practically useful, while simultaneously being 

narrow enough to permit a significant theory.  

Katz distributions have potential applications in areas other than minefield clearance.  

In considering the reliability of software, for example, one might begin by supposing that 

there are an unknown number of bugs, M, some of which are discovered and removed in 

the process of using and simultaneously improving the software (Jelinski and Moranda, 

1972).  In other applications M might represent ore pockets, oil deposits, schools of fish 

or unexploded ordnance.  Nonetheless, the language of minefield clearance will be used 

exclusively below. 

The next major section describes Katz distributions, utilizing several subsections and 

referring to appendices for proofs of theorems.   

KATZ DISTRIBUTIONS AND THEIR USES IN MODELING MINEFIELDS 

Generalities  

Suppose that a region contains an unknown number of mines, M, that an action is 

taken to find and remove the mines, and that Y mines are in fact removed by the action.  

The number of mines that remain is X ≡ M - Y.  It is X that determines the threat of the 

minefield to subsequent transitors.  Even though Y is known, X is not known exactly 

because M was not known in the first place.  Still, the nature of the clearance action 

taken, together with Y, may provide useful information about X through an application of 

Bayes theorem.  If the initial distribution of M is Katz, then the distribution of X will be 

of the same type, a feature that enables a multi-stage approach to minefield clearance 
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because the Katz output of one stage can be the Katz input to the next. Katz distributions 

also have some other appealing properties, so there are good reasons to begin a minefield 

clearance analysis by assuming a Katz distribution for M.   

Definition and basic properties 

Katz (1965) describes a probability distribution x0, x1, … with the property that  

 x x j
j

jj j+ =
+
+

≥1 1
0α β ; .  (1) 

The distribution (1) will be referred to as a “Katz distribution with parameters α and β ”, 

provided α and β meet certain restrictions.  We will use the notation M ~ K(α, β) to 

express this compactly, with the ~ symbol standing for “is distributed as”.  Given x0, 

equation (1) sequentially determines x1, x2, … . Since the sum x0 + x1 + … must be 1, x0 

is determined implicitly.  

The parameter α must be nonnegative, since it is the ratio x1/x0, and β must be less 

than 1 to enforce convergence to 0 for large j. If β < 0, then (1) will eventually produce 

negative probabilities unless –α/β is an integer. To prevent this possibility, –α/β is 

required to be an integer when β is negative. The restrictions on parameters are thus that  

 α ≥ 0,   β < 1,   and   –α/β is an integer when β < 0.  (2) 

Let the generating function be . Katz (1965) showed that  
0

( ; , ) j
j

j

g z x zα β
∞

=

≡∑

 [ ]( ; , ) (1 ) (1 )g z z α βα β β β= − − , (3) 

with (3) being interpreted as exp(α(z-1)) (the limit as β approaches 0) if β = 0. It follows 

that the initial probability must be  

 0 (0; , ) (1 )x g α βα β β= = − , (4) 

or x0=exp(-α) if β=0.  If M~K(α,β) then (3) implies that 
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 22( ) (1 )   and  ( ) (1 )E M Var Mµ α β σ α β≡ = − ≡ = − . (5) 

It is not hard to establish that a Katz distribution is  

• if β < 0, a binomial distribution with –α/β trials and success probability β/(β – 1),  

• if β = 0, a Poisson distribution with mean α, or  

• if β > 0, a negative binomial distribution. If α/β is an integer, this is the 
distribution of the number of failures until the α/β th success in a sequence of 
independent trials where the failure probability is α/β. However, the “number of 
successes” α/β can actually be any positive real number.  

The Katz class includes no other distribution, so it can be thought of as the union of three 

familiar types.  

Since the mean and variance are more familiar parameters than α and β, the solution 

of (5) for α and β in terms of µ and σ 2 may be useful:  

 β µ σ α µ σ= − =1 2   and  2 2 . (6) 

Always µ ≥ 0 and σ 2 ≥ 0 in (6), but some nonnegative (µ, σ) pairs are impossible 

because of the restriction that –α/β must be an integer when β is negative. This 

restriction is not imposed by Katz (1965), who simply zeros all probabilities after (and 

including) the first that (1) would make negative. Unfortunately, this tactic falsifies 

equations (3) – (6). For example suppose α = 1 and β = –2. Then (1) has x1/x0 = 1 and 

x2/x1 = –1/2, so Katz would take x0 = x1 = 1/2, xi = 0 for i ≥ 2. The mean of this 

distribution is µ = 1/2, not 1/3 as would be obtained by (5). The fact that (3) – (6) are 

false when β < 0 and –α/β is not an integer is not recognized in Katz (1965), nor in 

subsequent restatements such as Johnson and Kotz (1969).  

Since β = 1 – µ/σ 2, all (µ, σ 2) pairs where 0 < µ ≤ σ 2 are possible. This covers 

situations where there is great uncertainty about the number of mines present, as is 

typically the case in minefield clearance.  

The case where α = β = 1 is a “noninformative prior” in the sense that the ratio xj+1/xj 

is 1 for all j > 0.  It is a limiting case of the negative binomial where all nonnegative 
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numbers are equally likely and µ approaches infinity.  It is not a true distribution because 

all of the probabilities xj must approach 0, but may nonetheless serve as a prior 

distribution for operations such as the one described next.   

The Sample-Observe-Subtract (SOS) Property 

The main property that makes Katz distributions useful in minefield clearance is that 

the class is closed under SOS operations. Formally,  

Theorem 1: Let M be the number of mines, suppose M ~ K(α, β), let Y be the number 

of mines removed when each mine is removed with known probability p, independently 

of the others, and let X = M – Y be the number of mines remaining (not removed). Then, 

conditional on the event (Y = y) being given, X ~ K( ′α , ′β ), where ′α  and ′β  are given 

by (7) with q = 1 – p.  

 ( )q y qα α β β β′ ′= + = . (7) 

A proof can be found in Appendix A. The same proof can also be found in Washburn 

(1996), as can proofs of other theorems. 

Glazebrook and Boys [1995] introduce a larger class of distributions that is still 

closed under the SOS operation. Binomial distributions are generalized to “light tailed” 

distributions, negative binomial distributions are generalized to “heavy tailed” 

distributions, and the Poisson distribution continues to play its central role. The Katz 

class can be regarded as a two-parameter subset with additional, convenient analytic 

properties.  

Theorem 1 resolves a certain minefield paradox. Suppose that a minefield is cleared 

to the .5 level, and that Y mines are removed in the process. One might argue that Y mines 

must remain, since only half have been removed. But how can it be that the number 

estimated to remain should increase with the number cleared, since clearance is by its 

 5



nature subtractive? The paradox disappears when one realizes that clearance to a known 

level provides both evidence and removal. When β > 0, the evidence part dominates and 

the estimated number remaining does indeed increase with the number removed. When  

β < 0, the removal part dominates. In the Poisson case β = 0, the number removed does 

not affect the distribution of the number that remain.  

Since clearance is a process carried out in time, it is likely that clearance times 

T1, …, Ty will also be known when (Y = y) is observed. If the magnitudes of these times 

influence the posterior distribution of M, then the clearance times, as well as the number 

of mines cleared, should be accounted for. However, there is no effect of this kind as long 

as the clearance level p is known, regardless of the initial distribution of the number of 

mines. The proof of this statement can be found in Theorem 2 of Appendix A, and its 

corollary.  

Simple Sampling From a Katz Distribution 

Theorem 1 governs the case where Y, the number of mines removed, is observed. 

There are also circumstances where Y is not observed. One example is where M is the 

number of mines in region S, but only some fraction q of S (call it ′S , possibly a transit 

channel) is of concern. If q is interpreted to be the probability that any given mine will be 

in ′S , then the number of mines X in ′S  is the number remaining after sampling M at the 

level q, but without observing the results of the sample.  Another example is in minefield 

clearance where the clearance plan is the subject of analyis. Since Y has yet to be 

observed, any forecast of residual threat cannot be based on Y.  Theorem 3 states that X is 

still Katz, even when Y is not given. 

Theorem 3: Let M be the number of mines, suppose M ~ K(α, β), and let X be the 

number of mines in the sample when each mine is included with probability q, 
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independently of the others. Then X ~ K( ′α , ′β ), where ′α  and ′β  are given by (8) with 

p = 1 – q. 

 ′ =
−

′ =
−

α α
β

β β
β

q
p

q
p1 1

. (8) 

A proof can be found in Appendix A.  Of course, the number of mines Y removed from M 

is also Katz, but with p and q reversed in (8).  

Simple Initial Threat (SIT) for a Katz Distribution 

Uncertainty about the number of mines implies uncertainty about whether the 

minefield is safe for a transitor to cross. The simplest quantification is to define the 

parameter  

 t ≡ probability that a given uncleared mine kills the transitor,  (9) 

and then assume that all mines act independently. For example, suppose that mines are 

distributed uniformly and independently in a minefield with width W, that each mine 

actuates with probability B if the transitor’s straight line path takes it to within A/2 of the 

mine.  Assume also that the transitor will be killed with probability D, conditional on 

actuation. Then, as long as W >> A and the transitor’s path is near the center of the 

minefield (ignoring edge effects, in other words), the parameter t is ABD/W. However, t 

does not need to be calculated in that way – the calculation could involve actuation 

curves, navigation errors, and edge effects as in Odle (1977).  

The transitor is assumed to encounter the mines one at a time. As long as the transitor 

survives, the probability that the next mine kills it is by assumption t, independently of 

any others. The probability that all M mines fail to kill the transitor is therefore (1 – t)M, 

and the probability that the first transitor to enter the minefield is killed is the Simple 

Initial Threat (SIT): 

 SIT ≡ 1 – E((1 – t)M).  (10) 
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If M ~ K(α, β), equation (10) can be evaluated by substituting 1 – t for z in (3), obtaining  

 SIT = 1 – g(1 – t; α, β).  (11) 

If clearance is carried out and Y observed before the transitor enters the minefield, then 

′α  and ′β  from (7) should be substituted for α and β in (11).  If Y has not been observed, 

then α′ and β′ from equation (8) should be used instead.  

The method of forecasting SIT in current Navy tactical decision aids such as 

NUCEVL and UCPLN (Wagner, et al, 1999) is based on (7) and (11) with the 

aforementioned “noninformative prior” for M, essentially a limiting Katz distribution 

where β=1 and α=1. This distribution is “conservative” in the sense that E(M) is infinite, 

but such conservatism can have unexpected implications.  For example, a minefield 

cleared to a very low level, with no mines found, would be assessed to have an SIT of 

nearly 1. 

Threat to Transitors after the First 

The second and following transitors are much harder to deal with analytically than 

the first. Odle (1977) gives formulas for several multi-transitor measures, but derivation 

is non-trivial even when the number of mines is known. An exception is the “catastrophic 

failure” probability cn, the probability that none of n transitors is sunk, a concept and 

term that were introduced by Horrigan (1973).  Let Qn be the catastrophe probability for 

a single mine. Then cn is simply M
nQ  for M independent mines. If M ~ K(α, β), then the 

catastrophe probability is  

 ( ) ( ; ,M
n n nc E Q g Q )α β≡ = , (12) 

where g( ) is again the generating function given by (3). Odle (1977) gives the formula 

when M is Poisson, a special case. As in the case of SIT, the important thing is that the 

generating function of M be known.  
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The single-mine catastrophe probability Qn would be (1 – t)n if each transitor’s track 

were chosen independently of the others, but multiple transitors are usually assumed to 

attempt to follow the same track. In that case the correct “configured” computation of Qn 

can become a significant task in itself, particularly if navigation errors are involved, but 

the degree of difficulty has nothing to do with the distribution of the number of mines 

present. Regardless of the method used for computing or measuring Qn, (12) generalizes 

from one mine to a Katz distributed number of mines. 

There appear to be no simple, closed-form formulas other than (12) when multiple 

transitors are considered, even when the number of mines is known. There are practical 

methods for calculating the casualty distribution and other statistical measures (Odle, 

1977), but the methods do not simplify when the number of mines has a Katz (or even a 

Poisson) distribution.  

A simple upper bound on En, the expected number of casualties out of n transitors, 

can be obtained by observing that the number of casualties cannot exceed M, and 

therefore that En cannot exceed E(M). If each mine causes a casualty with probability at 

most D whenever it detonates, then a better bound is  

 En ≤ D×E(M).  (13) 

If M ~ K(α, β), then E(M) is given by (5). Since En is necessarily a nondecreasing 

function of n, (13) is sharpest for large values of n. Of course, E1 = SIT.  

Sums and Partitions of Katz Random Variables  

Suppose there are n independent mine populations Mi, with Mi ~ K(αi, βi), 

i = 1, …, n.  Let the total number of mines be M ≡ M1 +…+ Mn, and let the clearance 

level for the ith population be pi.  As usual, take qi ≡ 1 – pi. Let the number of type i 

mines cleared be Yi, with Y ≡ Y1 +…+ Yn, and let the number remaining be Xi, with X ≡ 

X1 +…+ Xn. Of course Xi + Yi = Mi and X + Y = M. These mine populations might be 

 9



different kinds of mines in one minefield, the numbers of mines in different minefields, 

or any other partition of M into n parts. Several questions arise about such mixed 

minefields 

• Does M have a Katz distribution? 

• If all of the Yi are observed, does X have a Katz distribution? 

• If only Y is observed, without knowing the mine types, does Xi have a Katz 

distribution? 

Theorem 4 and its corollaries in Appendix A deal with these questions.  The answers 

have a tendency to be a discouraging no, the exceptions being when all of the βi are 

equal, or better yet when they are all 0; i.e., when all populations are Poisson.   

The answer to the important third question is yes if Y = 0, since the observation that 

Y = 0 is equivalent to the observation that Yi = 0 for all i. The answer is also yes if p = 1, 

since in that case Xi = 0 for all i. One might hope that the answer would still be yes even 

if p < 1 and Y > 0, provided βi = β for all i, since the latter condition is sufficient for Y to 

be Katz (Corollary 1 to Theorem 4). Unfortunately, this is not true. Washburn (1996) 

shows that conditional independence fails unless β = 0.  This is further evidence that the 

Poisson case is an especially convenient assumption about the intial number of mines. 

If the total number of mines in a minefield is Katz, then can the total be easily 

partitioned into several independent component Katz distributions?  This question might 

arise because mines can be of different types, or because mines in different parts of a 

minefield receive unequal clearance effort.  The situation is similar to that with 

summation – the only useful theoretical results are in the case where all of the βi are 

equal, especially if they are equal to 0.  Theorem 5 of Appendix A summarizes what is 

known. 
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AN EXAMPLE  

Suppose it is known that approximately 50 mines have been placed in an area with 

dimensions 5 km long by 2 km wide.  Lacking any information to the contrary, the mines 

are supposed to be all of the same known type, and to be scattered uniformly over the 

area.  It is necessary to clear a channel through the area, but the channel needs to be only 

200 m wide, so only about 10% of the mines should be expected in the channel.  The top 

graph in Figure 1 shows the Katz distribution selected for the initial distribution of M, 

with α=4.5 and β=0.1.  It is of the negative binomial type, with a mean of 5 and a 

standard deviation of 2.48 mines.  If (8) is solved for (α,β) with α′=4.5, β′=.1, and q=.1, 

the solution is (23.68, .5263).  This Katz distribution for the number of mines in the 

whole area has a mean of 50 and a standard deviation of 10.27.  However, only the mines 

in the channel are of concern. 

We suppose that each mine has a sweepwidth of 20 m against transitors, within which 

damage is certain.  Since the channel is 200 m wide, this corresponds to a threat from 

each mine of t=.1.  The corresponding threat from the mines in the channel, if unswept, is 

SIT=g(0.9, 4.5, 0.1)=0.392 (formula (11)).  Suppose it is desired to reduce this threat to .1 

by clearing the minefield to some level p.  The effect of this sweeping is to change (α,β) 

to (α′, β′) according to (8), with q = 1 - p, and with (11) subsequently predicting SIT.  

The required clearance level turns out to be 0.789.  This clearance level must be achieved 

by selecting the number of tracks and runs of each track appropriately, considering the 

nature of the mines and the sweeping forces.  A tactical decision aid such as UCPLN 

(Wagner, et al, 1999) might be used in planning how to achieve the required clearance 

level. 

Suppose that 10 mines are removed in the process of effecting the clearance plan, a 

surprisingly large number, given the prior distribution.  Given this additional information, 

the residual threat of the minefield is no longer 0.1.  It can be determined by first using 
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equation (7), with (α,β) =(4.5, .1) and y=10, to compute (α′, β′) = (1.1605, .0211).  The 

corresponding posterior distribution is shown in the lower part of Figure 1.  The posterior 

SIT from (11) is 0.1112, larger than 0.1 because β>0 and a large number of mines were 

found (it is even conceivable that the minefield would be more threatening after 

clearance than before, although the number of mines found would have to be very large 

for that to happen).  If a threat of 0.1112 is still felt to be too large, then the clearance 

process must be continued until SIT is sufficiently small. 

The clearance process outlined above is sequential in nature, with the need for further 

clearance depending on the results of clearance to date.  This is a realistic feature, since it 

is characteristic of minefield clearance that the nature of the minefield is determined in 

the process of clearing it. 

This example has been taken from some tutorial notes on mine warfare models that 

can be downloaded (Washburn, 2005), if desired, along with an accompanying Excel™ 

workbook (Washburn, 2005).  Sheet “Katz” of that workbook incorporates the formulas 

required to make the above computations. 
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Figure 1:  Prior and Posterior (y=10) Katz distributions for the example. 

BAYESIAN METHODS, KATZ DISTRIBUTIONS, AND DECISION AIDS 

As a long-time teacher of Decision Theory at the Naval Postgraduate School, I can 

assure my readers that it is not easy to convince humans to quantify uncertainty using 

probability.  We are reluctant to do it, even in circumstances of far less importance than 

clearing a minefield.  Bayes Theorem is not intuitive, and posterior distributions are 

sometimes seen as having more to do with magic than with logic.  Given these human 

tendencies, the nature of current tactical decision aids for minefield clearance is 

understandable.  The user is never asked to quantify expectations about the most 

important parameter of a minefield — the number of mines that are present.  As a result, 

the effectiveness of clearance must be discussed in terms of clearance level p, rather than 

 13



the more natural quantity SIT.  I have encountered Navy officers who think of the two 

quantities as opposites; that is, that SIT must be 0.1 if p=0.9.  This, too, is natural, albeit 

wrong, since it is natural to expect decision aids to output quantities that are directly 

relevant to decision making.  But SIT and p are not opposites.  Probability theory, 

correctly applied, is simply unable to determine SIT or any other measure of threat 

without making some assumption about the number of mines initially present.  One can, 

of course, make a noninformative prior assumption for the initial number of mines, but 

this is simply getting the user out of the loop by utilizing a (pessimistic) default 

assumption.  One way or another, an assumption is required. 

Even if one accepts the idea that the number of mines M must be thought of as a 

random variable with a prior distribution, it does not necessarily follow that M should be 

forced to be Katz. The Katz class is closed under some important operations such as SOS, 

but not under all of them.  Particularly when multiple mine types are present, it is 

possible to make reasonable observations that result in joint posterior distributions not 

being Katz, or (worse yet) even independent, even when all of the prior distributions are 

Katz.  The Katz class may not be large enough. 

Why not permit general distributions for M?  A general distribution would require 

storing 1000 numbers if the maximum conceivable number of mines were 999. A Katz 

distribution requires only 2, but performing a Bayesian update on a general distribution 

would nonetheless be trivial with a modern computer.  In a different context, 

NODESTAR (Stone and Corwin, 1995) performs Bayesian updates with 106 states, 

rather than only 103. Using a general distribution would also have the advantage that any 

observation with a known conditional probability law could be the basis of a Bayesian 

update, which is not true in the Katz case. There seem to be some good arguments for 

removing all restrictions on the nature of the prior distribution.  The idea of using general 

distributions does not become computationally unwieldy until multiple random variables 

 14



must be described jointly. If there were for example five mine types, the number of each 

of which does not exceed 999, then there would be 1015 joint possibilities. Today’s 

computers cannot perform Bayesian updates on that scale, nor will tomorrow’s be able to 

do so.  Manipulating general distributions over two or three mine types is currently 

feasible, and potentially useful, but dealing with 5 mine types is not.  

The difficulty with Katz distributions when multiple mines types are present is that 

there are reasonable observations that destroy the Katz property, in which case one might 

as well have started with general distributions in the first place.  These difficulties largely 

disappear if all initial mine distributions are independent and Poisson, the special case 

where β=0. The decision aid COGNIT (McCurdy, 1987) assumes this.  Unfortunately, 

Poisson distributions have only a single parameter, the mean number of mines, which 

means that the standard deviation is not independently controllable — a Poisson 

distribution with mean 100 necessarily has a standard deviation of (only) 10. Inclusion of 

distributions with β > 0 (negative binomial distributions) in the permitted class seems 

essential to model the large uncertainty about mine numbers that is to be expected in 

practice. 

Among the three increasingly general classes of distributions (Poisson, Katz, and 

general), there are thus serious practical objections that can be made to each.  A mine 

clearance decision aid developer should therefore consider the distribution class question 

carefully.  Here are some further observations in favor of the Katz choice. 

Although general distributions for the number of mines are in most cases 

computationally feasible, it is also true that little is lost by restricting input distributions 

to be of the Katz type. In fact, the Katz restriction may be operationally welcome, since 

the entire distribution is determined from only two estimated numbers. With these 

thoughts in mind, one prototype TDA (MIXER) proposed by the author (Washburn, 

1995) employs Katz distributions exclusively, requiring the user to quantify uncertainty 
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by providing a mean and standard deviation for each mine type. MIXER relies entirely on 

input files and keyboard responses from the user.  Paes (2001) describes a more user-

friendly version Javamix with a GUI and some graphics. 

The Katz divisibility properties described in Theorem 4 could also prove handy. If a 

region containing M mines must be divided into two physical parts for two independent 

clearance operations, then Theorem 4 describes how the numbers of mines in the two 

parts can be independent, Katz, and still sum to M. The comparable operation in the 

general case may be difficult or impossible.  

Perhaps most important, the availability of an analytic expression for SIT in the Katz 

case opens up the possibility (as in MIXER) of posing the mathematical problem of 

minimizing SIT, subject to constraints on the clearance effort, a computational problem 

that would be much more difficult in the general case.  When a variety of clearance 

resources are available to deal with a variety of mine types, a decision aid capable of 

producing the “best” clearance plan should be operationally welcome. 

In summary, 

• Given the central importance of uncertainty about M in minefield clearance 

analysis, there are some good arguments for taking a Bayesian approach. 

• In a Bayesian analysis, Katz distributions are a natural class of probability 

distributions for the prior distribution of M. 
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APPENDIX A (Theorems) 
The theorems in this appendix are all taken from Washburn (1996), reproduced here for 
convenience. 
 
Theorem 1 states that Katz distributions are closed under the Sample-Observe-Subtract 
operation, the fundamental property that makes them useful in mine clearance. 

Theorem 1: Let M be the number of mines, suppose M ~ K(α, β), let Y be the number 

of mines removed when each mine is removed with probability p, independently of the 

others, and let X = M – Y be the number of mines remaining (not removed). Then, 

conditional on the event (Y = y) being given, X ~ K( ′α , ′β ), where ′α  and ′β  are given 

by (10) below with q = 1 – p.  

Proof: Let Pr( )jx M j= =  and * Pr( | ); 0,jx X j Y y j= = = = …. Then  

 

* Pr( ) Pr(   )

Pr(   )
Pr( )Pr( ).

jx Y y Y y X j

Y y M y j
Y y M y j M y j

= = = ∩ =

= = ∩ = +

= = = + = +

 (A1) 

But Pr( )Y y M y j= = +  is the binomial probability of y successes in y + j trials, so, 

letting q = 1 – p,  

 ( ) ( )* Pr ; 0,y j
j

y jx Y y p q x jy +
+

y j= = = … (A2) 

Taking the ratio of successive terms in (A2), the factor Pr(Y = y) cancels and  

 ( )* *
1

1
1 1j j

y jy jx x q
j y j

α β
+

+ +⎧ ⎫⎧ ⎫+ +
= ⎨ ⎬ ⎨ ⎬+ + +⎩ ⎭ ⎩ ⎭

. (A3) 

The first { } factor in (A3) is a ratio of combinatorial coefficients, and the second is by 

assumption xy+j+1/xy+j. The two (y + j +1) factors in (A3) cancel, so (A3) is again a linear 

function of j divided by j + 1, as was to be shown. If α and β satisfy (2), it is easy to 

check that the same is true of the revised parameters ′α  and ′β , where  

 ( )q y qα α β β β′ ′= + = . (A4) 
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This concludes the proof of Theorem 1.   
 

When the number of mines cleared (Y) is observed, it is likely that the clearance times 

U1, …, UY will also be observed. These times turn out to have no additional value in 

making inferences about the initial number of mines M, whether or not M has a Katz 

distribution, and therefore no value for the residual number of mines M – Y. This result 

may seem counterintuitive. If one searches for 24 hours, finding 5 mines in the first hour 

and none thereafter, then intuition argues that there are probably no remaining mines, 

whereas there might be more mines if the clearance times were scattered over the whole 

clearance period. This intuition might be correct if the probability law F( ) governing the 

detection times were unknown, since there is information about F( ) in the clearance 

times. If F( ) is known, however (as it must be if the clearance level is calculable), then 

the corollary to Theorem 2 states that the clearance times are useless.  

Theorem 2: Let M be a nonnegative random variable, and let T1, …, TM be 

independent, continuous random variables with common distribution function F( ). Let t 

be any real number, let Ii indicate the event (Ti ≤ t), let Y = I1 + … + IM, and let 

U = (U1, …, UY), where U1, …, UY are the nondecreasing order statistics of those Ti for 

which Ti ≤ t. If m and y are nonnegative integers for which 0 ≤ y ≤ m, and if 

u = (u1, …, uy) is a real vector, then either Pr(Y = y, M = m) = 0, or  
 Pr( , ) Pr( )Y y M m Y y= = = = = =U u U u . (A5) 

Proof: Both sides of (A5) are well defined if Pr(Y = y, M = m) > 0. Furthermore, 

both are 0 unless u1 < u2 < … <uy < t, so suppose that those conditions hold. Define the 

event  

 
1 1

( ) ( ) (
y m

ym i i i
i i y

)E M m T u T t
= = +

≡ = = >I I .  (A6) 
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Then, since the random variables Ti are all independent by assumption,  

 
1

Pr( ) Pr( ) ( ) [1 ( )]
y

m y
ym i

i

E M m dF u F t −

=

⎡ ⎤
= = −⎢ ⎥

⎣ ⎦
∏ .  (A7) 

The event ( ) ( )M m= ∩ =U u  includes Eym and other mutually exclusive events that 

have the same probability, since the first y of the Ti are not necessarily the smallest.The 

number of these events is , the number of permutations of m things taken y at a 

time. Thus  

!y
y
⎞⎛
⎟⎜

⎝ ⎠

m

 Pr( , ) ! Pr( )ym

m
M m y E

y
⎞⎛

= = = ⎟⎜
⎝ ⎠

U u .  (A8) 

Since Pr( , ) Pr( ) ( ) [1 ( )]ym
Y y M m M m F t F t

y
m y−⎞⎛

= = = = −⎟⎜
⎝ ⎠

, it is a simple matter to take 

the ratio Pr(U = u, M = m)/Pr(Y = y, M = m) to obtain  

 
1

Pr( , ) [ ( ) ( )]
y

i
i

y
Y y M m dF u F t

=

⎞⎛
= = = = ⎟⎜

⎝ ⎠
∏U u

n
.  (A9) 

But the right hand side of (A9) does not depend on m, so it must also be Pr( )Y y= =U u . 

In other words, conditional on (Y = y) being given, the order statistics U are distributed as 

if they were the order statistics of the truncated distribution F( )/F(t), sampled y times.   

Corollary: If both sides of (A9) are defined,  

Pr( , ) Pr( )M m Y y M m Y= = = = = =U u y .  

Proof: Apply Bayes theorem, recognizing that the right hand side of (A9) does not 

depend on m.  

According to the corollary, once the number of mines found is known, there is no 

additional value in observing the times at which they were found. 
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Theorem 3 states that the residual number of mines is Katz, even if the number of mines 

removed is not observed. 

Theorem 3: Let M be the number of mines, suppose M ~ K(α, β), and let X be the 

number of mines in the sample when each mine is included with probability q, 

independently of the others. Then X ~ K( ′α , ′β ), where ′α  and ′β  are given by (A13) 

with p = 1 – q.  

Proof: Since X is binomial when M is given,  

 
0 0

( )
j

X
j

j i

j i j i iE z x q p
i

∞
−

= =

⎞⎛
= ⎟⎜

⎝ ⎠
∑ ∑ z

)

 A10) 

 
0

( j
j

j

x qz p
∞

=

= +∑  (A11) 

 ( ; ,g qz p )α β= + , (A12) 

where g() is the generating function (3).  Equation (A11) is obtained from (A10) by 

combining the factors qi and zi, and then employing the Binomial Theorem. Equation 

(A12) is obtained from (A11) by recalling the definition of the generating function g( ). 

After rearranging (A12), X can be shown to be Katz with parameters  

 ′ =
−

′ =
−

α α
β

β β
β

q
p

q
p1 1

. (A13) 

If α and β satisfy (2), then so do ′α  and ′β .   

Theorem 4 and its corollaries deal with multiple mine types. 

 Theorem 4: Assume n independent mine populations Mi, with Mi ~ K(αi, βi), 

i = 1, …, n.  The total number of mines is M ≡ M1 +…+ Mn. The clearance level for the 

ith population is pi, with qi ≡ 1 – pi. The number of type i mines cleared is Yi, with Y ≡

 Y1 +…+ Yn, and the number remaining is Xi, with X ≡ X1 +…+ Xn.  If βi = β for all i, 
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then M ~ K(α, β), where α = α1 +…+ αn. Otherwise, M does not have a Katz 

distribution.  

Proof: Since the Mi are all independent, the generating function of M is the 

product of the individual generating functions (Johnson and Kotz, op. cit., p. 21) 

 [ ]
1

( ) (1 ) /(1 ) i i
n

i i
i

g z z α ββ β
=

= − −∏ . (A14) 

If βi = β for all i, then (A14) reduces to [ ]( ) (1 ) /(1 )g z z α ββ β= − − , the generating 

function of a Katz random variable. Otherwise, (A14) does not have the required form 

and M is therefore not Katz.   

Corollary 1: If qiβi  = β, i = 1, …, n, and if Yi is observed for i = 1, …, n, then  

 
1

~ ( ),
n

i i i
i

X K q Yα β β
=

⎞⎛
+ ⎟⎜

⎝ ⎠
∑ .   

Proof: According to (A4), ~ ( , )i i i i iX K q Y q iα β β+  when Yi is given. Since  

qiβi = β, the conclusion that X has a Katz distribution then follows from Theorem 4.   

Corollary 2: Suppose qi = (1/βi – 1)/(1/β – 1) for some parameter β; i = 1, …, n. Then  

X ~ K(αTOT, β), where  

 TOT
1

( )
n

i i
i

α β α β
=

=∑ .  (A15).  

Alternatively, if pi = (1/βi – 1)/(1/β – 1) for i = 1, …, n, then Y ~ K(αTOT, β). If βi = 0 for 

all i, then take β/βi to be qi (for X) or pi (for Y) in (A15). 

Proof:  The condition on qi enforces ′ =β βi  and ′α i  = β(αi/βi) in (A14), which applies 

when the number of mines cleared is not observed. The conclusion then follows from 
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Theorem 4. If the condition on pi holds, then the same logic applies to Y, the number of 

mines not removed.    

 

Theorem 5 deals with methods for sampling a mixed minefield when the Katz 

components M1,…,Mn are all independent.  One could, of course, sample n Katz random 

variables, but it will generally be  more efficient to sample M (the total), and then divide 

it into n parts.  Theorem 5 relies on the fact that a certain distribution is of the MCK type, 

as explained below. 

If M ~ K(α, β), then a closed-form expression for the probability mass function of M, 

valid if β < 0 or β > 0, is  

 ( )( ) (1 ) ( ) ;
!

mmP M m m
m

α β 0α β β β−
= = − − ≥ . (A16) 

The notation (x)m is taken from Feller (1957) where (x)m is defined to be x(x – 1) … 

(x - m + 1) for m ≥ 1, with (x)0 ≡ 1 (m is a nonnegative integer, but x can be any real 

number). The limit as β → 0 produces a Poisson distribution, so in that sense (A16) is 

valid for all (α, β) satisfying (2). If Mi ~ K(αi, β), and if M1, …, Mn are all independent, 

then M ~ K(α, β) according to Theorem 3. Let M ≡ (M1, …, Mn), and m ≡ (m1, …, mn). 

Then  

 1
1

( )
( ) ; 0,

( )

n

i i
i

i

P M m
P M m m m m

P M m
=

=
= = = ≥ = + +

=

∏
M m K nm . (A17) 

All of the factors involving (1 – β) and (–β) raised to powers cancel in (A17), leaving  

 1
1

( )
( )!(M m ) ; 0,( )

( )!

i
n

i m

i i
i n

m

mP M m m m m

m

m

α β

α β
=

−

= = = ≥ = + +
−

∏
K .  (A18) 
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The distribution (A18) will be referred to as a “multivariate conditional Katz distribution 

with parameters α, β, m and n”, or MCK for short. The MCK distribution is a 

multivariate hypergeometric distribution when β < 0, or a multinomial distribution in the 

limit as β → 0 (Johnson and Kotz, op. cit., p. 281). When β > 0, the MCK distribution 

has been called a multivariate Polya-Eggenberger distribution (Johnson and Kotz, 1977) 

on account of its relationship to certain urn-sampling schemes, or the multivariate Polya 

distribution (Janardin and Patil, 1970). Thinking of Mi as the number of balls in an urn 

leads to a practical way of generating M in a Monte Carlo simulation, since only a single 

Katz sample of the total M is really required. This is the gist of Theorem 5.  

Theorem 5: Let M ~ K(α, β), where α = α1 +…+ αn, αi ≥ 0 for 1 ≤ i ≤ n. The pair  

(αi, β) is assumed to satisfy (2) for 1 ≤ i ≤ n. Consider the following procedure for 

placing M balls in n urns. For k = 0, …, M – 1, the k + 1st ball is placed in urn i with 

probability pi, where  

 p k
ki

i i=
+
+

α β
α β

,  (A19) 

and where ki is the number of balls already in urn i. If Mi is the number of balls finally 

placed in urn i, then Mi ~ K(αi, β), and all of the Mi are independent of each other, 

i = 1, …, n.   

Proof: Let M ≡ (M1, …, Mn), and m ≡ (m1, …, mn). It will be shown by 
induction that (P M= =M m )m  is given by (24) for m ≥ 0. Since (24) is equivalent to 

(23), the theorem follows upon removing the condition on M.  
Let Q(m) be 1( nP M m= = + +M m K )m , and note that Q(0) = 1, a special case of 

(A18) where m1 +…+ mn = 0. Suppose Q(m) is given by (A18) for all m such that 

m1 +… + mn = k; let ei be an n-vector all of whose components are zero except for 

component i, which is 1; and let ki = mi – 1, i = 1, …, n (if ki < 0, then the corresponding 
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term may be omitted from (A20) below). Then, conditioning on the ball configuration 

after k balls have been placed,  

 
1

( ) ( )
n

i
i

i

kQ Q
k

α β
α β=

+
= −

+∑m m e  (A20) 

where m is now any configuration such that m ki
i

n

=
∑ = +

1
1. Q(m – ei) on the right hand 

side of (A20) is by assumption given by (A18), and it is now only a matter of some 

algebra to conclude that Q(m) on the left hand side is also given by (A18). Since m is 

arbitrary except for its sum, this completes the inductive proof.   

Comment: When β = 0, equation (A19) makes pi = αi/α for every ball. The fact that a 

Poisson random variable produces independent Poisson parts when partitioned in this 

manner is well known (e.g. Ross (1993)). When β ≠ 0, if each ball is placed in urn i with 

probability αi/α, instead of according to (A19), then by Theorem 3 ~ ( , )i iM K α β′ ′ , 

where (1 (1 ))i i iα α β α α′ = − −  and ( ) (1 (1 ))i i iβ β α α β α α′= − − . E(Mi) is still αi/(1 –

 β), but it is not true that Mi ~ K(αi, β), and furthermore M1, …, Mn are not mutually 

independent. These latter properties require that the balls be allocated according to 

(A19).  
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